
PERFORMANCE EVALUa4TION OF A
ST-4TIC DATA FLOl17 PROCESSOR FOR

TRANSFOlCMATI(liNS O F LARGE ARRAYS

Eugene Leviii

21 January 1985

Kcseili:h l i ,<it i tLte for Advanced Computer Scieilce
iV.4S.l A lies IZesetrch Cente;

(NASA-CR-187303) PERFORMANCE EVALUATION OF N9U-7 135 9
A S T A T I C O A T A FLOW PRQCESSOR FOR
TRANSFORMATIONS OF LARGE ARRAYS (Research Inst- for Advanced Computer Science) 8 p Uncl as

0 0 / 4 0 0295391

Research Institute for Advanced Computer Science

PERFORMANCE EVALUATION OF A
STATIC DATA FLOW PROCESSOR FOR

TRANSFORMATIONS OF LARGE ARRAYS

Eugene Levin

21 January 1985

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS TR 85.1

Data flow computers differ so radically from sequential processors that general performance
predicttons can' be misleading and it is essential to analyze specific classes of applicatzons. The
application addressed in this report involves a coordinate transformation of a very large four-
dimensional array. It was found that the inhci.err! r.., --JIrl;sm ..I._.. a/' t h prob!em eoiiM &e eaaiily
ezploited. However, for this application, the specific computer model considered suffered from
memory limitations and difficulties in efficient transfer of data between processing elements and
storage media. These were judged to be important design issues but not fundamental defects of
static data f low architectures.

- .

Work reported herein waa aupported in part by Contract " 3 2 - 1 1530 from the
National Acronautica and Space Administration (NASA) to the

Univeraitia Space Reaearch Aaaociation (USRA).

PERFORMANCE EVALUATION OF A STATIC DATA FLOW
PROCESSOR FOR TRANSFORMATIONS OF LARGE ARRAYS

E. Levin
Research Institute for Advanced Computer Science, Moffett Field, Calif.

INTRODUCTION: In order to achieve high speed by massive operational concurrency. the
Computation Structures Group of the MIT Laboratory for Computer Science has proposed a
supercomputer based on a static data flow architecture [1-4]. The performance of such a
computer may be application dependent ;5-6!, consequently, in September 1984 a study spon-
sored jointly by NASA Ames and DARPA was conducted at the Research Institute for
Advanced Computer Science in conjunction with MIT researchers (Dennis, Gao, Ackerman)
to evaluate data flow techniques and a specific static data flow computer model I?]. A sub-
stantial “kernel” was selected from each of six application areas and mapped onto the data
flow computer. The application described in this report arises in Computational Chemistry
in determining the electronic structure of molecules. I t was found that the VAL (data flow)
language was easy to learn and to apply for the application considered. However, the partic-
ular kernel involves a coordinate transformation of a very large array and results in substan-
tial time spent in 1 /0 operations for the assumed design parameters. I t was concluded that
the disk transfer rates were unnecessarily conservative and mismatched relative to the compu-
tational capability.

MACHINE DESCRIPTION: The static data flow computer considered for purposes of
the performance study was not fully defined by precise values for all the machine parameters.
The specific parameter values and assumptions utilized in this report are shown below:

Processing Elements (PE’s): 256 independent PE’s designed around the \Veitek 64-
bit floating point chip set including one adder chip capable of 5 MFLOPS and two multi-
plier chips each capable of 1.25 MFLOPS. Each PE was provided with 2048 64-bit words
of ixtr-cction memory and a local Array Memory of 256K words. If every PE is kept
busy and can completely process an instruction in 2 microseconds, the theoretical peak
performance is 1280 MFLOPS.

Routing Network: Input and output ports are provided for each of the 256 PE’s as well
as 1/0 ports for mass memory devices, display systems, etc. The links between ports
operate at 5 MHz over 16-bit data paths. For a packet consisting of an &byte floating
point value and 4-byte header, the minimum transmission time is 1.2 microseconds
(0.833 MHz), however if more than one PE is active, there may be blocking and interfer-
ence. Hence it is assumed that the fully loaded network can transmit packets a t a n effec-
tive rate of 0.25 MHz between ports.

Auxiliary Memory: The Array Memory is supplemented by 32 disk units each with an
assumed transfer rate of one megabyte/second permitting 32 MB to be read (written) per
second. The communication to the PE’s is through the routing network, hence there
must be a “sufficiently large” buffer memory between the disk farm and the PE’s. It is
assumed that the buffer memory is managed by a “smart” controller so that the 4-byte
headers needed by each packet are removed prior to disk transfer and appended prior to
transmission along the routing network. Consequently, in assessing the performance,
only 8-byte floating point numbers rather than 1Zbyte packets are assumed in disk
transfer operations.

- 2 -

MATHEMATICAL PROBLEM: The mathematical problem is to transform a function of
N4 elements, Fijkl, expressed in one basis set into a new function, Gpqrs, in terms of a new
basis set. G is related to F by the equation;

N
(1) Gpqrs= CipCjqCkrClsFijkl~

ijkl= 1

where C is the transformation matrix between basis sets. A very “expensive” way to imple-
ment the computation of Eqn (1) would be to evaluate each p,q,r,s, element of GPqrs by mul-
tiplying the four 1xN arrays obtained from C times the N4 elements of Fijkl. This is easy to
implement in VAL as illustrated below:

‘ function simpleTransf(n:integer,C:t2,F:t4 returns t4)
type t 1 =arraylreal];
type t 2=arrayit 1 j :

I type t3=arraylt21:
, type tl=array t 3 , :
I

let G:t4:=
forall p in jl,n],q in [l ,n] ,r in ! l ,nj , s in 11,111
construct

forall i in [l ,n] , j in [l ,n],k in Il .n], l in \ l , n]
eval plus C [i,p] * C[j,q] *C(k,r] * C jl,s] *F[i,j,k,l]
endall

endall;
in G
endlet
endfun

Unfortunately, this simple procedure requires z8N8 operations. The significant problems are
all associated wi th the large size of the parameter N which may be %SO-100 so that this
implementation of the computation would involve z8~10’~ operations for N=100. Further-
more. the number of elements in F or G is N4 or z6~10 - 1 ~ 1 0 , so that storage in array
memory becomes a problem. Hence;

6 8

(a)

(b)

The numerical algorithm must be computationally efficient, and

The procedure must be “tailored” to the specific data storage resources. .

.

NUMERICAL ALGORITHM: There are several approaches to restructuring the process
in order to improve the computational efficiency (See, for example [8]. That paper also con-
siders various commonly encountered symmetry cases such as {igj, k<l, ij<kl} which
reduce the sizes of the arrays to be stored. Only the most unfavorable case is examined in the
present report.). The following grouping reduces the number of operations from O(N8) to
o (N ~) .

.

- 3 -

For fixed i and j, 4N3 operations are needed for the multiplication of the 3 NxN matrices
inside the braces, or 4NS operations for all ij. The process may be repeated for the remaining
computations resulting in a total of 8N floating point operations. The VAL program to
implement the computations within the braces is shown below. This also illustrates the utili-

5

I
1

j

i

j
i
I
4
I

i

zation of function calls in VAL.

function partialTransf(n:integer,C:t2.F:t4 returns t4)
type tl=arrayjrealJ;
type t2=-array!tl];
type tS=arrayjt2];
type t4=array!tS];

external innerHalf(i,j,n:integer,C:tZ,F:tQ returns t2)

let. B:t4:=

in B
endlet
endfun

forall i in [l?nI,j in Il,n]
construct innerHalf(i,j,n,C,F)
endall;

function innerHalf(i,j.n:integer9C:t2,F:t4 returns t2)
type t I =array jreal];
type t2=array[tl] ;
type t 3 =array ! t 2] ;
type t l=array! t 3 1;

let A:t2:=

B:t2:=

in B
endlet
endfun

forall k in [l,n],s in [l ,n]
construct

forall 1 in !17n!
eval plus C [l,s] * F[i,j, k , 11
endall

endall;

forall r in Illnits in !l ,n]
construct

forall k in (1 7 n]
eval plus Clk,r]*Alk,s]
endall

endall:

In principal, the remaining calculations could be performed in exactly the same manner after
completing the partial transformation enclosed in braces. However, this assumes that all
values required for the computations are readily accessible, e.g. in a common random access
memory. If this is not true, the issue i s not qu.ite so simple. The essence of the problem can
be illustrated by supposing that Fijkl has initially been stored by indexing in the indicated
order. Thus, for a given set of ij-values there is no problem in retrieving all kl-values

- 4 -

forall i in [I ,n] , j in[l,nj,r in (I ,n] , s in [l , n]
construct A[r,s.i,j]

efficiently for the construction of Bijrs in the VAL program above. Note, however, that in the
final steps of Eqn (2) it is the last two indices of that are held fixed. The following VAL pro-
gram accepts as input Aijrs and returns B,,ij. This must be inserted after the above program
t o perform the necessary re-ordering prior to the final computations.

DATA MANAGEMENT/PARTITIONING: It is possible to retain the NxN matrices
Cij in the array memory of each processing element (PE), however, the number of elements in
Fijkl (and in the result function Gpqrs) is N4 so the process must be partitioned. The specific
partitioning described below is not necessarily optimal but serves to illustrate issues to be
considered with t,his architecture.

For fixed i and j. a single PE can perform the calculations within the braces of Eqn (2), i.e.
multiplication of 3 NxN matrices (CTFC) requiring 4K3 floating point operations. The gen-
eral schema is to spread this task (for various i,j) over the 256 PE’s and also assign several
ij-cases to each PE. The (distributed) results must then be reordered so that fixed rs-cases
(for all i,j) can be assigned to individual PE’s for the remaining operations of Eqn (2) . There
is a qualitative difference, however, between N=50 and N=100 for the machine considered.

For N=50, the NxN matrices each contain 2.5K elements and the number of ij-cases to distri-
bute is 2500. Each of the 256 PE’s can perform ZlO of the ij-cases without exceeding the
capacity of their array memories and the re-ordering operation is performed by routing
between PE’s. For N=100, however, the matrices each contain 10K elements and there are
lo4 ij-cases to distribute. Hence intermediate results must be returned to disk (using a “bin
sort” i n the disk buffer memorj) and subsequently retrieved for the final operations. (I t is
not a t all clear if the VAL compiler will automatically link these partial re-orderings or if this
must be explicitly managed by the user.)

PERFORMANCE: Table 1 summarizes the results for various values of N and also shows
the effects on performance resulting from variations in the machine definition parameters. In
each case, the sum of the individual step times is shown, however these steps can be over-
lapped (or “pipelined”) and the times to complete are closer to the longest individual times
shown in bold type in the Table. Note that doubling the number of PE’s essentially doubles
the size (and cost) of the entire computer. For comparison, estimated times are also shown
for a Cray 2.

t

.

256M WORDS OF MEM.

TRAXSFER RATE

CONCLUSIONS: The particular algorithm examined is typical of problems in which the
need for very high computational speed arises because the dimension is large. In many such
problems it is also the case that the “operations per dimension” are not extensive, hence this
class is characterized by substantial parallelism, short “pipelines” and large 1 /0 requirements.
With the proposed data flow architecture, there is no difficulty in exploiting the inherent
parallelism by spreading the operations over the processing elements. A major issue becomes
the efficiency of routing and communication between the PE’s and disk. Applications of this
type occur often enough to merit consideration in the design of the data flow computer. In
particular, the disk transfer rate seems much too low for a “supercomputer” and could easily
Ibe improved using current technology. From Table 1, it is clear that this upgrade (together
wi th the necessary increase in buffer memory) would be the most effective design change to

ield significantly better performance for such I/O intensive applications.

,

- 6 -

REFERENCES
1.
2.

J.B. Dennis, “Data flow supercomputers,” Computer, vo1.13, pp. 48-56, Nov. 1980
J.B. Dennis, G.R. Gao, and K.W. Todd, “A da ta flow supercomputer,” Computation
Structure Group Memo 21 3, Laboratory for Computer Science, MIT, Cambridge, Ma.,
Jan. 1982
J.B. Dennis and G.R. Gao. “Maximum pipelining of array operations on static data flou
machine.” in Proc. of the 1983 lnt. Conf. on Parallel Processing, IEEE. Aug. 1983.

J.B. Dennis. “Data flow ideas for supercomputers,” in Proc. of the Compcon ’84 28th
IEEE Comp. SOC. Int . Conf.. Mar. 1984.

5 . J.B. Dennis. G.R. Gao. and K.W. Todd, “Modeling the weather with a data flow super-
computer.“ IEEE Trans. on Comp., vol. C-33, pu’o.7, July 1984.

6. J.B. Dennis, “High speed data flow computer architecture for the solution of the
Navier-Stokes equations,” Computation Structure Group Memo 225, Lab. for Comp.
Sci.. MIT. Cambridge. Ma., 1983
G.B. Adams Ill. R.L. Brown, and P.J. Denning, “Report on an evaluation study of da ta
flow computation,” Research Institute for Advanced Computer Science Report TR
84.12, KASA Ames Research Center, Moffett Field. Ca., Dec. 1984.
S.T. Elbert. “Four index integral transformation: an n4.? problem?,” Report on the
Workshop Numerical Algorithms in Chemistry: Algebraic Methods, pp. 129-141, U.C.
Berkeley, Ca., Aug. 1978.

3.

4.

i .

8.

.

